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The present study examines the flow past slender bodies possessing finite centre-line 
curvature in a viscous, incompressible fluid without any appreciable inertia effects. We 
consider slender bodies having arbitrary centre-line configurations, circular transverse 
cross-sections, and longitudinal cross-sections which are approximately elliptic close 
to the body ends (i.e. prolate-spheroidal body ends). The no-slip boundary condition 
on the body surface is satisfied, using a convenient stepwise procedure, to higher 
orders in the slenderness parameter (e) than has previously been possible. In fact, the 
boundary condition is satisfied up to an error term of O(e2) by distributing appropriate 
stokeslets, potential doublets, rotlets, sources, stresslets and quadrupoles on the body 
centre-line. The methods used here produce an integral equation valid along the entire 
body length, including the ends, whose solution determines the stokeslet strength or 
equivalently the force per unit length up to a term of O(e2). The O(e2) correction to the 
stokeslet strength is also found. The theory is used to examine the motion of a partial 
torus and a helix of finite length. For helical bodies comparisons are made between the 
present theory and the resistive-force theory using the force coofficients of Gray & 
Hancock and Lighthill. For the motion considered the Gray & Hancock force 
coefficients generally underestimate the force per unit length, whereas Lighthill’s co- 
efficients provide good agreement except in the vicinity of the body ends. 

1. Introduction 
The singularity method for Stokes flow has been shown by Chwang & Wu (1974, 

1975) and Chwang (1975) to be a very useful tool in constructing solutions to a wide 
variety of flows past axisymmetric bodies which need not be slender. Here we consider 
the flow past a slender body of circular transverse cross-section and arbitrary centre- 
line configuration having a prescribed centre-line motion. The solution is constructed 
by distributing appropriate singularities along the body centre-line using the pre- 
viously mentioned works as a guide in selecting the needed singularities. Attention is 
restricted to bodies whose longitudinal cross-section shape is elliptic in the neighbour- 
hood of the body ends (i.e. prolate-spheroidal ends). For a slender body we require the 
slenderness parameter, e = b / l  (where b is a typical transverse cross-sectional radius 
and 1 the body half-length), to be small compared to unity. In  recent years the slender- 
body problem has received considerable attention (Tuck 1964; Cox 1970; Tillett 1970; 
Batchelor 1970; Keller & Rubinow 1976). Those studies considering curved centre-line 
configurations (Cox 1970; Keller & Rubinow 1976) have used the method of matched 
asymptotic expansions to generate solutions valid away from the body ends. Cox 
expands the solution directly in powers of 1/lnE, whereas Keller & Rubinow first 
obtain an integral equation representation of the solution which they solve using an 
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iteration scheme similarly producing an expansion in terms of l/lne. Only Cox has 
applied the method to examples involving bodies having curved centre-lines. In  such 
appkations it is generally only practical to obtain the force per unit length neglecting 
terms of 0[( l/ln E ) ~ ] .  It is worth pointing out that in the method of matched asymptotic 
expansions not only is the end effect neglected as an approximation, but also the effects 
of local centre-line curvature. In  those methods the inner expansion of the velocity 
field is taken to be the flow past an infinitely long straight circular cylinder. The present 
study retains both the end effect and the effect of the local body curvature. We do, 
however, limit our investigation to slender bodies whose centre-line radius of curvature 
is everywhere large compared to the cross-sectional radius b and slender bodies whose 
centre-line does not reapproach itself. In the latter case, for example, we must omit a 
helix of high pitch or a nearly closed partial torus. 

In  the present method the velocity field is constructed by superposing distributions 
of stokeslets, doublets, rotlets, sources, stresslets and quadrupoles on the body centre- 
line with initially unknown strengths. This integral representation of the velocity 
field is then partially integrated by constructing expansions to the integrand valid for 
points close to the body surface (the expansions being valid along the entire body 
length, including the ends). Satisfying the no-slip boundary condition neglecting terms 
of O(e2 In e) results in an integral equation, valid for the entire body length, which 
determines the stokeslet strength (i.e. the force per unit length) within an error of 
O(e2) .  The other singularity strengths are found as functions of the stokeslet strength. 
Proceeding to one further term in the boundary condition produces the O(e2) correction 
to the stokeslet strength. Satisfying the boundary condition with the same degree of 
accuracy using an expansion in powers of l/ln c requires retaining an infinite number of 
terms in the expansion - the inherent disadvantage in using such slowly convergent 
expansions. The utility and accuracy of the method for slender bodies presented here 
was demonstrated by Johnson & Wu (1979) for the flow past a slender torus. For that 
special case they were able to calculate the force per unit length on the torus in closed 
form neglecting terms of O(c2). 

We begin the study with a general discussion of the boundary-value problem con- 
sidered. This is then followed in $ 3  with the special case of a slender body whose 
longitudinal cross-section takes the form of an ellipse over the entire body length when 
the body centre-line is straightened (i.e. a slender prolate spheroid having a curved 
centre-line). In $ 4  the extension of the methods to bodies whose longitudinal cross- 
sections need only be elliptical in the vicinity of the ends is given. Finally, in $ 5  
we apply the methods developed to a few simple motions involving a partial torus 
and a helix. Comparisons are made with existing results, including the force 
coefficients of Lighthill (1976) for a helix. 

2. General problem 
The governing equations and boundary conditions for the Stokes flow problem 

( 1 )  

considered are vp = pv2u, V a U  = 0, 

u = U(x, t )  (x on the body surface Bb), 

as x-too, 
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FIGURE 1. Slender-body geometry ($ = n- $). 

where u is the velocity vector, p the pressure, y the constant viscosity coefficient, t the 
time, and x the position vector in three-dimensional Euclidean space. We note that an 
additional undisturbed flow a t  infinity which satisfies the Stokes equations could be 
readily included by appropriately redefining the velocity in order to obtain equations 
in the same form as (1) .  The linearity of the governing equations allows us to construct 
solutions to a given problem by superposing the fundamental singular solutions of the 
Stokes-flow equations. 

We will consider the case of arbitrary motion of a flexible slender body with circular 
transverse cross-section and length 21. The centre-line configuration of the slender- 
body motion can be generally prescribed in the parametric form 

x = xo(s, t )  ( - I  < s < I ) ,  (2) 

where s is the arc length along the centre-line. The parametric function x,(s,t) is 
assumed a t  least twice differentiable in s and t. The body centre-line can in general be 
extensible. Therefore €or arbitrary t we prescribe the arc length position of a material 
point, which was originally at  so for t = 0 ,  by the following mapping from so to S,  

s = s(so, t )  where s(so, 0 )  = so. 

In the following, all quantities having the dimensions of length will be non-dimen- 
sionalized by the body half-length I (unless otherwise stated). Associated with the 
centre-line the unit vectors in the tangential, normal, and binormal directions are 
given by (see figure 1 )  

where K is the local non-dimensional curvature of the body centre-line. The admissible 
motions will be limited to those in which the centre-line radius of curvature is for all s 
and t large compared to the transverse cross-sectional radius of the body. 
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The motion of the body surface a t  any station s may be regarded as consisting of a 
translation of velocityV and a rotation about the point xo(s, t )  with angular velocity SZ. 
The no-slip boundary condition on the body surface a t  s is therefore given by 

u = V + SZ x re, on r = sy(s), (4) 

where e, = sin $ e, - cos $en and r = q ( s )  describes the body surface, with ( r ,  $) 
denoting the polar co-ordinates in the body cross-sectional plane (figure 1).  The velocity 
V and angular velocity 51 are specified by 

= SZ x e, (v = n,s, b) ,  
(%)so constant 

where the velocity V and angular velocity SZ have been non-dimensionalized by U and 
U/1 respectively ( U being an appropriate characteristic velocity). It is particularly 
convenient to decompose the boundary condition on r = E~,J(S) into its components 
(u, v, w) along the (en, e,, e,) directions at  s, 

u = K-syfi2,sin$, v = K+sy(CI2,sin$+Q,cos$), w = V,-syCI,cos$. ( 5 )  

3. A slender prolate spheroid having a curved centre-line 
(i) Leading-order solution 

At present we restrict our attention to bodies with circular transverse cross-sections 
whose radius satisfies 

r = eq(s) = ~ ( 1  ( -  1 < s < I ) ,  (6) 

where as already mentioned we have non-dimensionalized with respect to 1 and defined 
e = b / l  < 1.  As a first approximation, we assume the velocity field is given by a line 
distribution of stokeslets and doublets along the body centre-line. The extent of the 
distribution is guided by the exact solution for a straight prolate spheroid (Chwang & 
Wu 1975) and taken to lie between the generalized foci of the body, i.e. the foci of the 
sketched straight body s1 = ( 1  -c2)4 = e, where e is the generalized eccentricity. The 
velocity field is therefore given by 

where s’ is the integration variable and Us and U, are respectively the stokeslet and 
doublet velocity fields 

Here the stokeslet and doublet strengths p0r unit length, a and P, are unknown func- 
tions of s and t and are non-dimensionalized by U and U P  respectively. Noting figure 1 
we have 

1 (9) 
R = R, + rer($, t ) ,  R, = xo(s, t )  - xo(s’, t), 

R = IRI = [R%+r2+2re,.Ro]h, R, = /R,I,J 
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R being the position vector from the body centre-line a t  sf to a field point x in the plane 
of the polar co-ordinates ( r ,  @) a t  s and R, a position vector between the two points 
s' and s on the body centre-line. 

In  general, if we simply applied the boundary condition to (7) in its present form we 
would be left with the difficult job of solving a Fredholm integral equation of the first 
kind for the two singularity strengths. However, for the case of a slender body it is 
possible to partially integrate (7 )  by constructing uniformly valid expansions of the 
integrands for points in the neighbourhood of the body surface using the standard 
methods of perturbation theory (Fraenkel 1969; Cole 1968; Van Dyke 1975). This 
reduces (7) to the more easily solved second-kind integral equation for the stokeslet 
strengtth alone, with the doublet strength being determined in terms of the stokeslet 
strength. In  particular, the uniformly valid expansion of the integrand is composed of 
the expansions in the following three regions: ( I )  the inner expansion for points sf near 
s where the boundary condition is to be satisfied, (2) the outer expansion for points sf 
away from s and (3) the common-part expansion which is the inner limit of the outer 
expansion or equivalently the outer limit of the inner expansion. The composite or 
uniformly valid expansion is then constructed by taking the sum of the inner and 
outer expansions and subtracting the common part. The resulting expansion can then 
be partially integrated termwise. This method is essentially a generalization of that 
used by Handelsman & Keller ( 1  967)) and Tillett (1 970) for axisymmetric slender 
bodies. A complete account of the genera1 expansion met hod is given by Johnson & Wu 
(1979). In  the present study we will satisfy the boundary condition neglecting terms of 
O(e2) and therefore the integrands will be expanded to that order; the details of which 
are given in the appendix. 

After integrating the expansions of the integrands in (7)  (see appendix) and eval- 
uating the velocity on the body surface neglecting terms of O(as2 In e) our first, approxi- 
mation to the velocity components in the (en, e,, e,) directions a t  s become 

u z Z(ag)L+B(,O))-f(s,@;a, B )  c o ~ $ + u ~ ~ + e ~ ( c o s @ u ~ ~ ) + s i n @ u ~ ~ ~ ) ,  (10) 

v 2: 4(a$O'L - BiO)) - g(s, @; a, B )  + u$O) + ~ ( C O S  @dl) + sin @d2)) ,  (11) 

UJ 2(ab0)L +Bbo)) +f(s, $; a, B )  sin $++Lo) + ~ ( C O S  $ u ~ ( ~ )  + sin@d2)), (12) 

where aio) (v = n, s, b )  are the components of the first term in the inner expansion of the 
stokeslet strength (i.e. the stokeslet strength a t  s' = s ) ,  BLo) (v = n, s, b )  are the com- 
ponents of the first term in the inner expansion of the slowly varying portion of the 
doublet strength (see appendix, p(s) = e2B(s) (s: - s2)), and 

2 
L = ln-, 

E 

S 1 - 9 2  
h 2 ( S )  = 2- hl (s )  = 2 q -  

1 - e2s2' 1 - e2s2' 
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uLo)= K,(R,;a)ds' (v = n,s ,b) ,  Ll 
(v = n, s, b;  no sum on the subscript v), 

D, = D, = 1, D, = 2. 

The vector components in the above integrand, K,, refer to the base vectors e,, e,, e, 
a t  s where the boundary condition is to be satisfied. The velocity terms dk), dkf and 

(k = 1,2) in (lo), ( 11)  and (12) each have the general form 

a(a)lns+b(a,  B)+c($)G,+/" - 81 I(R,;a)ds', (17) 

where G, is given by ( 1  3). The detailed expressions for (17) are extremely lengthy and of 
little practical interest and thus the reader is referred to Johnson (1977). The point to 
make here, for later use, is that all of the terms in (17) which are functions of $ are 
found as products with the function G, = aso) - 2B$), which will be equated to zero in 
satisfying the boundary conditions to leading order. Consequently only simple func- 
tions of $ will remain in the terms of order E in (lo), ( 11)  and (12). 

We now observe that ( lo) ,  ( 1 1 )  and (12) are capable of satisfying the boundary 
conditions ( 5 )  to the lowest order, with an error of O(a~lne) ,  provided the angular 
velocity, GI, is of O( 1) or smaller. With this restriction the terms involving SL in the 
boundary condition become of order E or smaller. We then take G, = 0, for all s, i.e. 

I?;')) = &xio) (v = n, s, b ) ,  (18) 

in order to eliminate the leading-order terms in ( lo) ,  (1 1)  and (12) which depend on the 
angle $. We are then left with the following integral equation for a, neglecting terms of 
O(ae In E), 

q(s ,  t )  = a,($, t )  L, + K,[Ro; a(s', t ) ]  ds' (v = s, n, b) ,  (19) /YSl 
where L, = 2(2L- 1) ,  L, = L, = 2L+ 1, L = ln(2/e) and K,(R,;a) is given by (16). 
Consequently, we see that a = O(l/lnE). For a given centre-line configuration and 
motion the leading-order solution is fully determined when the solution of (19) is 
obtained. At present it appears that (19) determines a to within an error of O(s/lne); 
however, we will find, the rather surprising result that satisfying the boundary con- 
dition to higher orders in E (neglecting O(e21nE)) does not alter this leading-order 
result for a and consequently (19) determines a to within an error of O(s2). A similar 
integral equation valid away from the body ends and in a somewhat different form is 
found to leading order using the method of matched asymptotic expansions by Keller 
& Rubinow (1976). Further discussion of this equation will be given later. 

(ii) Higher-order solution 

We now proceed to  satisfy the boundary condition to higher orders in E .  We define 
the remaining velocity terms in the boundary condition after neglecting the terms of 
O(s2) as 
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(20) I 22 = sq[cos $u(l)+ sin $(d2)+ QJJ, 

6 = q[cos $(&) - a,) + sin $(v(2) - Q,)], 

8 = ~y[cos $(,(I)+ R,) +sin Q W ( ~ ) ] .  

I n  order to satisfy the boundary condition to higher orders it will be necessary to 
cancel the above residual velocities on the body sukface. This will be done by incorpor- 
ating further singularity distributions into our solution. 

We begin by considering the velocity components in the n-b or transverse cross- 
sectional plane of the body, i.e. 22 and 8. These components can be written as 

The terms are easily identified by combining the velocities 22 and 8 and expressing the 
result in terms of the (er, e+) base vectors (see figure l) ,  

22en+8e, = ae,-b(cos 2$ee,-s in2$e~)+c(sin2$e,+cos2~e+)+de~.  (23) 

A physical interpretation of the velocity terms in (23) clearly motivates the choice of 
additional singularities to be used. The first term with coefficient a is a 'radial-type' 
flow in the transverse cross-sectional plane which exhibits a constant flow in the e, 
direction for all angles $. Such a velocity term obviously suggests that we incorporate 
into our solution a source distribution or equivalently a tangential doublet distribu- 
tion. The last term in (23) is a ' rotational-type ' flow about the body centre-lineand can 
be corrected for by including a tangential rotlet distribution with strength 8,. The 
remaining two terms represent ' extensional-type ' flows in the cross-sectional plane, 
with their principal axes subtending an angle of in. Based on the exact solution for a 
two-dimensional circular cylinder in an extensional flow (Chwang & Wu (1975) we 
envisage the need for a stresslet and quadrupole distribution to eliminate each of these 
terms. 

The higher-order tangential velocity term, 6, represents two 'shear-like' flows in the 
e, direction and can be adjusted to satisfy the boundary conqition by introducing a 
distribution of rotlets oriented in the en and e, directions (strengths an, 8,). 

It is worthwhile to note that if we only desire to satisfy the boundary conditions 
through terms of O(as In E ) ,  with an error of O(as), then the explicit expressions for 
u(k) ,  v(k) and w(k) (17) are given by (Johnson 1977) 
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where 7 is the centre-line torsion (see appendix). Consequently we then have b = c = 0 
in (22) and therefore to that order only a rotlet and source distribution is needed since 
the ‘extensional-type’ velocity terms are of higher order. In  addition, a t  this order 
we have the first appearance of the local centre-line curvature effect. 

The velocity field induced by the higher-order singularities used to correct the 
boundary condition is 

u* = s”’ {UR(R;g) +U,o,,c,(R;~)+~lU,,(R;e, ,e,)+BIU,(R; e,,e,) 
- 81 

+A^,~,,(~;e,,e,)+B~~~(~;e,,~b))ds’. (25) 

The general form of the rotlet, source, stresslet and quadrupole velocity terms are 
given respectively by (Chwang & Wu 1975) 

For the special case of a torus it was found (Johnson & Wu 1979) that the rotlet, 
source and stresslet strengths were each proportional to the cross-sectional radius 
squared, while the quadrupole strength was proportional to the cross-sectional radius 
raised to the fourth power. With this guidance we assume that the rotlet, source, 
stresslet, and quadrupole strengths are respectively given by 

I 
A 

S(S, t )  = s2S(s, t )  (sf -9), 

I &(s, t )  = €2rn(S, t )  (Sf -s2), 

A,(S,  t )  = €2A,(S, t )  (Sf - s 2 )  

B,(s, t )  = s*~,(s,  t )  (sf - s2)2J  
1 for k =  1,2.  

(27) 

As one might expect from the weak long-range behaviour of these singularities the 
outer and common part expansion of the above singularities are all of higher order than 
those terms retained. In particular it is easy to verify after determining the singularity 
strengths that the outer and common-part expansions yield a contribution to the 
velocity field of O(s2) or smaller. We construct the inner expansions to the integrand 
by expanding the singularity strengths in the two-variable fashion as was done for the 
doublet strength (see appendix). After integrating and evaluating on the body surface 
we find, after neglecting terms of O(e2), - - 

1 4  

E [2aq r a g  as 2 1.) 

u* 2: - 2sq[(D2 - C2) sin @ + ( 2 4  + D l )  cos 91 - 2s2q21n- -- 8, +---dn + 2 m  
8 Fzaq q a s  as 

w* 2: 2sq(6bcos~++,sin$)-4s2q21n- 2 [ W  -- m+- y a m  --- K s b ) ]  

E qas  2 as 2 9 

as, w* 2: - 2sq[(D2 + C2) cos @ + (2B, - Dl) sin $1 + 2s921n- -- 8, +-+ 7sb +- 8, 
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c k  = A,-  2Bk (k = 1,2) ,  

419 

D,  = m + (A,  - 4 B 1 )  cos 2$, 

D2 = 8, - (A2 - 4 B z )  COS 2$, 

and y2 = 1 - s2 on the body surface. We now observe that the first terms in the above 
expressions (those terms in ( 2 8 )  containing the factor 267) can correct for the residual 
velocity terms in ( 2 0 )  and thereby satisfy the boundary condition through terms of 
O(ae) by requiring 

8, = Qd = ~(w(1)+U(2)+2fi ,) ,  8, = $ ( f i b - V ' ' ) ) ,  8, = $(fin-'@ 

As already mentioned, up to  this point we have been able to satisfy the no-slip 
boundary condition neglecting terms of O(e2 In E )  without altering the stokeslet 
strength, a, determined by the integral equation found earlier. Therefore the integraI 
equation (19) actually determines a within an error of O(e2) .  However, in order to 
correct for the additional velocity terms induced by the rotlet and source distribution, 
i.e. the remaining terms of O(e21ns) in ( 2 8 ) ,  it is necessary to make a correction of 
O(e2)  to the stokeslet strength. We therefore include an additional stokeslet with 
strength €,a* in our solution. Clearly from ( lo) ,  ( 1 1 )  and ( 1 2 )  (see appendix) the 
leading-order velocity term due to the new stokeslet will be 

(30) 
2 2 2 

u 2: 2e21n-u~, v _N 4e21n-olF, w 2: 2e21n-aB. 
6 6 6 

Thus the remaining terms in (28) are cancelled by taking 

4. Slender bodies having arbitrary longitudinal cross-sections away 
from the ends 

In  a straightforward manner we can modify the previous solution method to handle 
slender bodies whose longitudinal cross-section is arbitrary over the majority of the 
body length and approximately elliptic in the vicinity of the body ends. In  particular 
the cross-section is specified by 

= e7(s), 

with the condition that 72(s) N ( 1  - s2) (1  + O(e2))  as s+ 1 and ~ ( s )  is a sufficiently 
slowly varying function of s away from the ends. The primary difference in this case is 

14-2 
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that we now construct expansions to the velocity field near the body surface in two 
regions, one valid in the centre of the body away from the ends and the other for the 
end regions where s - & 1 .  Ultimately we then match the centre and end expansions in 
their common region and construct the uniformly valid expansion for the velocity 
field in the standard fashion. For each of the regions, i.e. centre and ends, the integrands 
of the velocity field Singularity distributions are handled precisely as in $ 3 ; namely we 
construct uniformly valid expansions about the point s’ = s. Since the methods follow 
from before we will, for the sake of brevity, simply point out the modifications to be 
made. 

The velocity field is constructed using the same singularities as before, except here 
we assume that all of the singularity strengths, excluding the stokeslet, are specified 
in the two regions as 

(Enf(s, t )  m ( s )  (centre region), 

lcnf(s, t )  (s! - s2)n/2 
f@, t )  = 

(end region), 

where f(s, t )  represents the various singularity strengths and n = 2 for all of the higher- 
order singularities except for the quadrupole, in which case n = 4. The stokeslet 
strength is expressed in precisely the same manner as before over the entire body 
length. 

In  the end regions the inner expansion of the integrands is constructed by applying 
the two-variable expansion technique to the singularity strengths as was done in $3. 
I n  theseregions theinner andouter expansions of theintegrands areidentical with those 
in $ 3  (also see appendix) since the expansions of the strengths and cross-sectional 
shapes are the same. Consequently the velocity field in the neighbourhood of the body 
surface near the ends is unchanged from before (equations (1  0), ( 1  I), (1  2)). The bound- 
ary condition in the end regions is therefore satisfied by ( 1  8) and (19) and is extended to 
higher orders in E giving the same results as in $ 3. 

For the centre region a two-variable expansion of the singularity strengths is 
unnecessary since the cross-sectional radius is slowly varying and therefore we use a 
Taylor series expansion about s’ = s. Here the inner expansion of the integrands, 
excluding the stokeslet, take a new form since the singularity strengths are no longer 
expanded in a two-variable fashion. As a result of this and the fact that in the centre 
region the cross-sectional shape is given by the general expression q(s) we find after 
integration and evaluation on the body surface that the velocity due to the stokeslet 
and doublet is given by (10)) ( 1  1) and (12) with the following changes : 

In  the centre region the no-slip boundary condition is then satisfied a t  the leading 
order (neglecting terms of O(ae In c)) by taking G, = G, = 0 and the solution of a from 
the integral equation (19) where L assumes the new form given in (32). Furthermore 
the matching condition on the velocity field, i.e. the end limit of the centre expansion 
must equal the centre limit of the end expansion, requires G, = 0. For the centre 
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region the higher-order velocity terms dk), dk) and w ( ~ )  [equation (17)] resulting from 
the stokeslet and doublet distribution now contain an additional term of the form 

which clearly vanishes for the special case considered in Q 3. With only this slight change 
occurring, the boundary condition in the centre region can also be satisfied through 
terms of O ( @ )  by including the higher-order singularities into the solution. The 
algebraic details are given by Johnson (1977). 

After constructing the uniformly valid expansions to the velocity field on the body 
surface you find that the integral equation for a [equation (19)] with L given by (32) 
is valid along the entire body length, determining a with an error of 0 ( e 2 ) .  Note that 
near the ends the behaviour of ~ ( s )  is such that In [2( 1 - s2)S/q(s)] N In (2/e) and we 
obtain the integral equation for an elliptical cross-section body. The order e2 correction 
to  the stokeslet strength is given as before by (31), except here the body cross-sectional 
shape r2(s) + 1 -s2. 

5. Applications 
I n  many applications concerning the motion of slender bodies a t  low Reynolds 

numbers the quantity of interest is the total hydrodynamic force F and the force per 
unit length f = F/ds acting on the body. The first of these follows from the well-known 
result that the total force on the fluid is 8np times the total stokeslet strength. It does 
not, however, immediately follow that the force per unit length along the entire body 
length is given by 8np times the. stokeslet strength per unit length, as a is not distri- 
buted along the entire body length. However, from the expression for the force exerted 
on a closed surface in an incompressible Newtonian fluid, 

F = S,, ( -pn +pw x n) d ~ ,  

where p is the pressure, w the vorticity and n the outward unit normal to the body 
surface S,, it can be shown after a rather lengthy calculation (making use of the 
expressions for the p and w due to the various singularity distributions) that the force 
per unit length is given with an error of O(e2) by 8npa (Johnson 1977). It is worthwhile 
to point out that this result is not necessarily true to  higher orders in the slenderness 
parameter. This can be seen from the exact solution for a straight centre-line prolate 
spheroid (Chwang & Wu 1975) which gives f = 8npa(l -e2)*. For practical applica- 
tion an error in the force per unit length of O(e2) is often sufficient and therefore the 
present interest is in discussing methods available for calculating the stokeslet strength 
from the integral equation (lg), repeated here for convenience, 

c(s, t )  = a,(s, t )  L, + K,(Ro; a)  ds’ (v = s, n, b ) ,  (33) 

where 

L, = 2(2L- l),  L, = L, = 2L+ 1, L = ln[2(1 -s2 )4 /q ] ,  D, = D, = 1, D, = 2, and Ro 
is the vector between the points s’ and s on the body centre-line. 
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Clearly (33) is in general three simultaneous integral equations for the three vector 
components of the stokeslet strength, a,, a,, a,. However, for bodies with a planar 
centre-line, i.e. bodies for which en and e, lie in the same plane for all s, we see that 
Rob = 0 and thus the equation for a, separates from the equations for a, and a,. Conse- 
quently if V, = 0 we have the expected trivial solution a, = 0 and there remains two 
coupled equations for a, and a,. Similarly if V,  = 0 we have the solution 
a, = a, = 0 and a single integral equation for a,. For a straight centre-line body (33) 
reduces to three independent equations for a,, a,, ab which has the well-known solution 
for a slender prolate spheroid a, = V,/L,. One further comment concerning (33) is that 
for a toroidal ring of constant cross-section equation (33) is valid if the integration 
variable is taken to be the angle 4 between s and s' with the integration limits & 7~ and 
L = ln(2/c). In  that particular case Johnson & Wu (1979) have, by a somewhat 
different approach, solved the integral equation in closed form. However, for more 
general body shapes having ends it is usually necessary to resort to approximate 
numerical techniques. 

One rather obvious approximate procedure, that can be carried out analytically in 
some cases, is to use the iteration scheme defined by 

= 0, but V, 

where aSk) (v = n, s, h )  is the kth iteration of av, f(s) = ( 1  - s2) /q2 (s ) ,  and here 
L = In (2/e) in L,. With the initial guess a$,") = 0 we see that aL1)gives the familiar result 
for a straight, slender prolate spheroid. Continuing the iteration to higher orders yields 
succeeding corrections to the solution sought, for the actual body shape and motion. 
This iteration scheme generates an expansion for a,, in powers of l/Lv with an error 
in the kth iteration of order (l/L,)k+l. The expansion here arises as the natural 
one for the problem and appears to be of a somewhat more general nature than the 
expansions in terms of ( l / h  e), given by Cox (1970) and Keller & Rubinow (1976). In 
fact, if we have the same number of terms in the two expansions we must neglect an in - 
finite number of terms in the 1/L, expansion to obtain the expansion in terms of l/lne. 

The iteration method given by (24) has an error of O( l/Lp)k+l in the kth iteration and 
therefore the sequence is slowly convergent. Accordingly, many iterations may often 
be needed in practical application to obtain sufficiently accurate results. Also we see 
that it is impossible with this method to take full advantage of the true accuracy of a 
inherent in the original integral equation (i.e. O(e2)). For this reason it is often desirable 
to use a direct numerical computation method. The procedure used in the examples to 
follow was to generate a set of linear equations by replacing the integral in (33) with a 
sum using a quadratic quadrature formula. The linear system of equations was then 
easily solved using either Gaussian elimination with iterative improvement or t,he 
Gauss-Seidel iteration method. We note that for the case of a slender torus and straight 
prolate spheroid the results from this computational method were in excellent agree- 
ment with the analytic results. 

A useful example demonstrating the iteration procedure given by (34) is the trans- 
lation of a toroidal ring along its symmetry axis. For this case = V ,  = 0, V, = 1, and 
therefore a, = a, = 0. With the appropriate changes to the integral equation for a 
torus we have, after taking aio) = 0, 
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Second iteration for the broadwise motion of a partial 
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torus. 

It is easy to see that continuing the iteration to higher orders will lead to similar terms, 
thus giving 

The final expression above is the summed result for an infinite number of iterations and 
is precisely the result found in a direct fashion by Johnson & Wu (1979). 

We can also easily obtain the first two terms for the similar translation of a partial 
spheroidal torus, i.e. a body with an elliptical longitudinal cross-section and a centre- 
line given in polar co-ordinates by p = a, 101 6 8, (i.e. an arc of a circle). For this case 
the second iteration is also given by ( 3 5 )  although now the integration limits are given 
by the body ends, - e8, - 8 and e8, - 8, where e is the generalized eccentricity. Inte- 
grating, we find 

where 
@,+B el-@ 

tan - tan - A(8)  = In - 
4 

16 
4 e l  - 82 

and 8, = e8,. From figure 2 ,  where we have plotted A for some typical cases, we observe 
that this first correction results in decreasing the force per unit length from that on a 
straight centre-line body (i.e. l/Lb) with the greatest reduction near the body ends. As 
expected, for small 8,, A(8)  is small and the result is close to that for a straight body. 
We note that the difference between ( 3 6 )  and the solution obtained by the direct 
numerical method (not shown) is found to be less than 1%. In this simple case the 
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FIGURE 3. Translation of a partial torus in its own plane. 

accuracy of the iteration scheme is quite surprising, however, for more complex body 
centre-lines and motions it is overly optimistic toexpect such a high degree of 
accuracy with so few iterations. 

An example, which can be compared to a result given by Cox (1970), is the transla- 
tion of a partial spheroidal torus in its own plane. With the translational velocity taken 
to be V = e, we have 

V,  = -cos$, V,  = -sin@, V, = 0,  

where $ = 8+8,, 0 = 0 being the centre-line midpoint and 8, the angle of incidence 
between 0 = 0 and the direction of translation e, (figure 3). Here we have ab = 0 and 
with the initial guess a@) = 0 we find 

where 
g,(e) = A +u(i  - 3 9 )  + c ( i  -3)- 2(1- 2 9 ) ,  

k,(8) = - b( 1 - 3 9 )  - d( 1 - 9), 

g,(U) = b(5 - 9-l) + d( 1 - 9 - 1 ) )  

Ic,(e) = 2~ + 4 5  - 39-1) + c( i  - ~ - 1 )  - 2(3 - 29-1)) 

u = cos *el cos ge) b = - cos *el sin ge, 
c = cos gol cos $U, d = - cos $el sin QU, 

9 = L,/Ls and A is given in (36b). Cox (1970) gives the x component of the force per 
unit length for this case [hi; equation (7.32)] as an expansion in terms of l/lnE. Here 
the non-dimensional force per unit length on the fluid in the x direction is given by 
f, = -8;rr(a,cos$i-assin$), where a, and us are given by (37). Cox's result can be 
obtained from the present result by expanding 1/L, (v = n , s )  in terms of l/lne, 
neglecting O[ (l / ln E ) ~ ] ,  and by approximating the result for points away from the body 
ends. In figure 4 Cox's result is compared with the second iteration given here and to the 
direct numerical computation of a for a typical case. We see that the expansion in 
l/Lv is generally in better agreement with the numerical result than the expansion 



Slender-body theory for Stokes $ow 

3 * 

425 

2 -  

- hio=;. - 

1 

given by Cox. Apparently the fact that the terms 1/LY sum an infinite number of terms 
absent in the l/lnc expansion make it a better approximation. Near the body ends 
both expansions have approximately the same error magnitude ; therefore it would 
seem that when end effects are of primary interest it is generally best to abandon the 
itera tion scheme and resort to the direct numerical approach. 

An example relevant to flagellar hydrodynamics is the motion of a slender body 
having a helical centre-line. Of particular interest is the translation of the helix along 
its axis. Here we will compare the results of the slender-body theory (using the direct 
numerical calculation method) to those of resistive force theory using ( 1 )  the classical 
Gray & Hancock force coefficients and ( 2 )  the zero thrust sub-optimal force co- 
efficients recently introduced by Lighthill (1 976). From the resistive-force theory the 
force per unit length, f, exerted on the fluid by B slender body with centre-line velocity 
V is f,, = ,uC,,V, (v = n, s, b ) ,  where C, is the force coefficient. The coefficients of Gray & 
Hancock and Lighthill are respectively given by 

271 477 
2h 1’ 

In--- 
b 2  

c, = - c,= - 
2h 1 (Gray & Hancock), 

In-+- 
b 2  

27l 477 c,=- c,=- 
2q 1 (Lighthill), 

2q 9 In-+- 
b 2  

In - 
b 

where q = 0.09h, A being the wavelength measured along the body centre-line, b the 
transverse cross-sectional radius and h the wavelength measured along the helix axis. 
The need for a coefficient C, does not arise since Y,  = 0 for the translation along the 
helix axis (the direction n being radiaIly inward to the helix axis or z axis in a cylindrical 
co-ordinate system (p ,  8 , ~ ) ) .  
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FIGURE 5. The force per unit length for the translation of a helix along its symmetry axis a t  the 
zero thrust values of c / U  (constant cross-section). (a) Five waves along the body length, c / U  = 
2.90; (b) one wave, c / U  = 2.92. ~ , slender-body theory; ---, Lighthill (1976); ---, 
Gray t Hancock. Wave parameters: a/h = 0.25, b/h = 0.01. 

The Lighthill force coefficients are valid for a helical flagellum producing zero net 
thrust, i.e. a flagellum with negligible cell body drag to overcome. Therefore an 
appropriate comparison is made by considering a helix translating along its symmetry 
axis with its angular velocity, w ,  about that axis chosen such that the total force in the 
translational direction is zero. For a detailed discussion concerning the propulsion of 
flagellated micro-organisms possessing helical flagella1 the reader is referred to Light- 
hill (1976), Chwang & Wu (1971), Chwang, Winet & Wu (1974) and Higdon (1979). 
The helix centre-line and motion under consideration is described in an orthogonal 
Cartesian co-ordinate system (ex, e,, e,) by 

(1 + a2k2)4’ 
x = (asin8, acos8, e lk ) ,  8 / k  = 

V = (aw cos 8, - aw sin 8, U ) ,  

where a is the amplitude, k = 2n/A, U the translational or swimming speed and the 
wave speed c is given by w l k .  

In  figures 5 (a,  b )  we compare the force per unit length exerted on the fluid calculated 
by the slender-body theory and the resistive-force theory for a representative case. The 
body cross-section was constant over the major portion of the centre-line and fitted to 
a prolate spheroid a t  a distance 20s from the body ends. There are five waves (or turns) 
along the helix in figure 5 (a)  (n = 5) and one wave in figure 5 ( b )  (n = 1) .  As already 
noted the value of w or equivalently c / U ,  which is indicated in each figure, was deter- 
mined from the slender-body theory in order to obtain zero thrust. Furthermore, the 
zero thrust value of c /  U calculated with Lighthill’s coefficients was within 2 of the 
value shown, whereas the Gray & Hancock coefficients were in very poor agreement. 

Although Lighthill’s coefficients were derived for a helix with an infinite number of 
waves along its length (i.e. neglecting end effects) we see in figure 5 (a)  that excellent 
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FIGURE 6. The force per unit length for the translation of a helix along its symmetry axis at the 
zero thrust value of c / U  (prolate spheroidal cross-section). (a) Five waves along the body 
length, c / U  = 2.86; ( b )  one wave, c l U  = 2.87. - , slender-body theory; ---, Lighthill 
(1976). Wave parameters: a/h  = 0.25, b / h  = 0.01. 

agreement with the slender-body theory is obtained for a helix with only five waves. 
As expected, the only deviations occur a t  the body ends. Not only are there deviations 
in f, and fb near the ends, but there exists a non-zero force in the normal direction, f,, a 
result not predictable by resistive-force theory. This normal force is a finite length or 
end effect and arises owing to the fluid motion induced by the moving helix. Even with 
only one wave along the helix (figure 5 b )  Lighthill's coefficients are sufficiently accurate 
for many applications provided the normal force is not of interest. The Gray & Han- 
cock coefficients are clearly a poor approximation for either case. For a helix having an 
elliptic longitudinal cross-section the force per unit length calculated from the Light- 
hill coefficients using the local cross-sectional radius, b(s) ,  is again in good agreement 
with slender-body theory for five waves and yielded reasonable results for n = 1 
(figures 6a,  b ) ,  except in the vicinity of the ends. 

We note that Lighthill's coefficients were derived for a/A < 0.32 (Lighthill limits his 
helix pitch angle a to a2 < 0.2). This is generally adequate for application in micro- 
organism motility; however, for larger values of a / A  the force coefficients are often 
unreliable. For example, for a / A  = 1.0, b/A = 0.01 and n = 5 the zero thrust value of 
c/ U predicted by the resistive-force theory using Lighthill's coefficients is 2.27 whereas 
the slender-body theory predicts c / U  = 3.27. For the case of a thrusting flagellum 
force coefficients capable of determining the force per unit length with similar 
accuracy are not presently available. In  connection with flagellar hydrodynamics 
Johnson & Brokaw ( 1979) recently used the present slender-body theory to examine 
the accuracy of the resistive-force theory when applied to a freely swimming 
flagellar model generating typical finite amplitude planar waves. 

The author would like to thank Professor T. Y. Wu for many stimulating discus- 
sions during the present investigation. This work was partially sponsored by the 
National Science Foundation, under Grant CME-77-21236, and by the office of 
Naval Research, under Contract NOOO14-76-C-0157. 
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Appendix 
The expansions of the integrands in (7)  are constructed for field points in the vicinity 

of the body surface a t  s; consequently we let r = €7, where 7 = O(l) ,  and the 
distance from a point on the body centre-line a t  s’ to the field point may be written as 

R = (R; + s2y2 + 2e7er. R,)t. (A 1)  

As discussed in the introduction we limit our analysis to the consideration of bodies for 
which R, > O(s) for all s’ - s > O(e), i.e. we exclude from our study slender bodies in 
which the centre-line reapproaches itself. With this restriction the outer expansion of 
R-l (valid for points s’ away from s) is 

Outer 

Writing R, in terms of the unit vectors e,, en, e, at s, i.e. 

we have 
RO = ROS es + Ron en eb, 

Considering the integrand due to the stokeslet distribution first, we have the outer 
expansion of the normal velocity component (the component in the direction normal to 
the body centre-line at s) given by 

where a.’R = a. R, - a n q  cos yi + a b  €7 sin yi and l / R  is given by (A 2).  In  the above, 
the vector components are expressed in terms of the unit vectors at  s. Since the outer 
expansions for the tangential and binormal velocity components are constructed in 
precisely the same manner we will simply indicate what changes need to be made. The 
tangential component is obtained from (A 3) by replacing a, and Ron with a, and Ro, 
and omitting the term €7 cos yi. Similarly, the binormal component is given by (A 3) 
replacing a, and R,, - €7 cos yi with a(, and Rob + €7 sin yi. 

For the inner expansion we introduce the inner or stretched variable given by 
cr = (s‘ - s)/e and we expand R; and R for CT fixed and e -+ 0, giving 

Riinner = E2G2 - &s4CT4K2 + 0 ( E 5 ) ,  (A 4) 

(A 5 )  

Rinner = (em$) + s3&L3)) e, + (erg) + e2cr2rff) + e 3 ~ ~ 3 r f ) )  e, 

+ (erp + e3V3r63)) e, + 0 ( € 4 ) ,  

rp = - 1, r f )  = 1 2 

where e,, e,, en are the unit vectors at s and 

BK 7 
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7 being the torsion, i.e. the measure of the rate a t  which the centre-line x,(s, t )  twists 
out of the osculating plane (&,/as = re,). Using (A 4) and (A 5 )  we find the inner 
expansion of R-I as 

(4) inner = i z[i+p €U2 R , + - ( ~ 4 R 2 + u 3 R 3 ) + O ( e 3 ) ] .  €2 
A2 

where 

R, = - ~ ~ ( ~ c o s $ + ~ r s i n $  a K  

A = (a2+q2)9. 

The stokeslet strength has the inner expansion about s’ = s 

ainner(s’, t )  = a(,) + ma(ll+ e2u2a(2) + O(e3), (A 7) 

a(,) = a,(s, t )  e, + a,(s, t )  en + ab(s, t )  e,, 

where (es, en, e,) are the unit vectors at s, and a” (v = n,  s, b)  are the components of a at 
s in terms of these unit vectors. The detailed expression for a(2) is not presented since it 
is rather lengthy and plays no essential role to the order at  which we are working. 
Using (A 5 ) )  (A 7)  and (A 8) the inner expansion of the normal velocity component 
due to  the stokeslet distribution is found to be 

&ner = U p .  en = (a:) + EU.CC(,~) + E2a2ag))lR 

+ (a. R) ( ~ 2 )  + &2r:) + e3u3r23)/B3 + O(@), (A 9) 

where i /R is given by its inner expansion (A 6) and 

a .  R 2: s(aC,, + Clo) + E ~ ( ~ ~ C ~ ~  + uC2J 

+ + a2C32) + O(e4), 

C,, = aio)ril), C,, = aclrg) +abo)rbl), 

C,, = ail’ rp)  + a8) rg) ,  

C3, = a:;)rP) + ah2) .A1). 

C,, = ag) rg)  + ah’) rb’’, 
C - ai2) + YE1 + ri3) + r(3) + a&O) r(3) 

33 - n n  b 

The inner expansion for the tangential component is readily obtained from (A 9) by 
replacing aLk), r g ) ,  rp’,  r:) with crri’), 0, ri3) respectively. For the binormal com- 
ponent akk), r:), r?), r:) is replaced in (A 9) by a?), rC), 0, 4”‘. 

The common-part expansion is most easily obtained by taking the inner limit of the 
outer expansion. For the normal velocity component this amounts to substituting 
into (A 3) and (A 2) the inner expansions for a, R;l and Ro, (v = n,  s, b )  which can be 
obtained from (A 7) )  (A 4) and (A 5 )  respectively. The common-part expansion for the 
tangential and binormal components is similarly constructed. The uniformly valid 
expansion is, as discussed in 0 3, the sum of the outer and inner expansions minus the 
common part. 
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Now, considering the doublet distribution, we observe that the outer expansion is 
of order / /B," where p is the non-dimensional strength and Ro = O(1) for the outer 
region. Based on what has been found for the slender torus and straight body we 
assume a priori that O(p)  = O(e2a). We then conclude that the contribution to the 
velocity field from the outer expansion of the doublet distribution is of higher order 
than those terms retained and therefore can be neglected. This assumption on the 
order of the doublet strength wiIl of course be verified later when the doublet 
strength is determined. Furthermore, the common-part expansion is readily obtained 
from the inner limit of the outer expansion and is therefore also of order e2a. This 
can be checked by considering the outer limit of the inner expansion, which is a more 
formidable task. Therefore we need only calculate the inner expansion of the doublet 
distribution. For the inner expansion: we could expand the doublet strength about 
s' = s as was done for the stokeslet; however, that particular choice makes the 
analysis unnecessarily complicated. A better choice is motivated by noting that for 
a straight prolate spheroid the doublet has a parabolic distribution between the foci 
of the body (Chwang & Wu 1975). This suggests that we take 

P(s, t )  = e2B(s, t )  (~21-s'). 

pinner(,l, t )  = p(0) + ,,p(l) + e2+(2) + 0 ( € 3 ) ,  

(A 10) 

(A 11) 

The doublet strength is then expanded about sf = s as follows : 

where P(k) = s2B(k)(s, t )  (s4 - 9'2) for k = 0, 1,2,  .. . , with Bck) given by (A 8) replacing 
a, (u  = n, s, b )  by B,. What we have done here is to expand the slowly varying portion 
of the doublet strength B about sf = s while leaving the parabolic modulation intact, 
thereby properly accounting for the behaviour of the doublet strength near the body 
ends. This procedure is in direct analogy with the two-timing or two-variable expan- 
sion method found in perturbation theory, in which we have a fast and a slow variable 
(Van Dyke 1975). The inner expansion of the integrand due to the doublet distribu- 
tion is then easily obtained from the inner expansion of the stokeslet distribution 
(equation (A 9) for the normal velocity component) by replacing ( u  = n, s, b ) ,  
l / R  and 1/R3 with /$k) ,  1/R3 and - 3/R5 respectively. 

Our first approximation to the velocity field [equation (7)] thus becomes 

u(s,r ,$)  =Iu* (UN+U,)innercd~+~"'  (Upter-Ucommon N Dort)ds' +0(c2a) ,  (A 12) 

where ul = (sl + s)/e and g2 = (sl - s)/e. Since the unknown singularity strengths have 
been expanded about s' = sin the inner and common-part expansions it is now possible 
to integrate many of the terms in (A 12). After integration and evaluation of the 
velocity on the body surface neglecting terms of O(ae21n e)  we find (lo), ( 1  1 )  and (12) 
(see 93). 
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